	B.Tech (Computer Science and Engineering)		
	1 st SEMESTER		
	Course Name: Semiconductor Physics (BTPH104-18)		
At th	e end of the course, the student will be able to:		
CO1	Apply the fundamental principles to study the properties of electronic materials		
CO2	Outline the free electron theory and periodic potential for electronic material		
CO3	Identify the properties and Behaviors of semiconductor		
CO4	Explain the Principle of optoelectronics devices and its applications		
CO5	Apply the fundamental principles to study the properties of electronic materials		
	Course Name: Semiconductor Physics Lab (BTPH114-18)		
CO1	Identify the physical principle involved in the various instruments.		
CO2	Verify some of the theoretical concepts learnt in the theory courses.		
CO3	Draw conclusions from data and develop skills in experimental design.		
CO4	Summarize technical report which communicates scientific information in a clear and concise manner.		
-(C(1))	Demonstrate to the methods used for estimating and dealing with experimental uncertainties and systematic "errors."		
	Course Name: Maths -1 (BTPH104-18)		
CO1	Apply differential calculus for single variable functions.		
CO2	Apply integral calculus for single variable functions and its applications.		
CO3	Find the rank and inverse of matrices by elementary transformations.		
CO4	Illustrate the concept of vector spaces & linear transformations of finite dimensional vector spaces.		
CO5	Make use of matrices and linear algebra.		
	Course Name: Basic Electrical engineering (BTEE 101-18)		
CO1	Outline the basic concept of DC and AC Electrical circuits		
$+$ $($ \cdot $)$ $($ $)$	Apply the fundamental principles of DC & AC electrical circuits to solve the problems related to electrical circuits		
CO3	Interpret the physical components and working of transformer.		
CO4	Demonstrate the working and constructional details of DC machines and Induction Motors.		
CO5	Summarize the different electrical components ,wiring and earthing for electrical installations.		
	Course Name: Basic Electrical engineering Lab (BTEE 102-18)		
CO1	Identify the physical principle involved in the various instruments.		
CO2	Verify some of the theoretical concepts learnt in the theory courses.		
CO3	Draw conclusions from data and develop skills in experimental design.		
CO4	Summarize technical report which communicates scientific information in a clear and concise manner.		
CO5	Demonstrate to the methods used for estimating and dealing with experimental uncertainties and systematic "errors."		

	Course Name: Engineering Graphics & Design (BTME 101-21)		
CO1	Describe the principles of Engineering Graphics and its tools.		
CO2	Draw orthographic projection and explain its concept.		
CO3	To have the knowledge of generating the pictorial views.		
CO4	Explain the solid projection techniques and surface development.		
CO5	Use CAD Tools to draw 2d and 3D Models and generate printable drawing.		

	2 nd SEMESTER		
Course Name: Chemistry-1 (BTCH101-18)			
CO1	State the periodic functions, theories and solutions of Quantum mechanics.		
CO2	Explain spectroscopic techniques and behavior of metallurgical systems.		
CO3	Explain the principles of intermolecular interactions and geometrical features of stereochemistry.		
	State the organic reactions, basic principles and the processes of thermodynamic system.		
CO5	Illustrate the properties of water corrosion and its remedial effects.		
	Course Name: Chemistry-1 Lab (BTCH102-18)		
CO1	Synthesize a small drug molecule and analyse a salt sample		
	Measure molecular/system properties such as surface tension, viscosity, conductance of solutions,		
CO2	redox potentials, chloride content of water		
CO3	Analyze the acid content of different lubricating oils used in daily life.		
	Acquire some technical, theoretical as well as a practical knowledge for introduction to principles		
CO4	and techniques of chromatography		
CO5	Study the arrangement of atoms in different structures.		
	Course Name: Maths -II (BTAM204-18)		
	Recall the various measures of Statistics like arithmetic mean, median and mode, moments,		
CO1	skewness and kurtosis.		
CO2	Relate two variables and fit the curves for prediction using data		
CO3	Apply probability distributions and their properties.		
CO4	Develop probabilistic models for continuous distributions.		
CO5	Interpret the sample data for given population.		
	Course Name: Programming for Problem Solving (BTPS 101-18)		
	Explain the basics of computer hardware and software, algorithm, pseudo codes and programming		
CO1	structures.		
G02	Illustrate the use syntax, semantics and constructs to solve mathematical and logical problems in		
CO ₂	'C' language.		
CO3	Identify the role of simple data structures, memory allocation and data handling for various		
	applications in 'C'.		
	Identify the concept of functions.		
COS	Make use of structures, pointers and file handling to perform various file related operations.		
	Course Name: Drogramming for Ducklam Calving Lak (DTDC 102-19)		
CO1	Course Name: Programming for Problem Solving Lab (BTPS 102-18)		
	Determine the algorithms for simple problems using arithmetic expressions.		
	Devise iterative as well as recursive programs.		
	Interpret data in arrays, strings and structures and manipulate them.		
CO5	Review the pointers of different types and use them in defining self-referential structures.		
	Course Name: Workshop/ Manufacturing Practices (BTMP 101-18)		

CO2	Demonstrate the various process parameters.
	Compare theoretical and practical aspects of the dimensional accuracies and tolerances of
CO3	different manufacturing processes
CO4	Illustrate the knowledge of different job shops.
CO5	Define the advance manufacturing practices.
	Course Name: English (BTHU 101-18)
	Construct sentences using different forms of a word and illustrate significance of using formal &
CO1	in-formal words in different context.
	Identify the importance of using formal grammar (such as rules, proper order of words and
CO2	sequence of sentences) and spot grammatical errors.
	Classify different types of sentence structures (such as simple, compound and complex sentences)
CO3	and remember usage of it in different contexts.
	Summarize factual information from a text and then paraphrase it using techniques of writing
CO4	precisely.
	Organize formal writings (business, report, proposal, E-mail, writings) and informal writings such
CO5	as personal letter & e-mails etc. using a specified format.
	Course Name: English Lab (BTHU 102-18)
	Comprehend spoken English (such as pronunciation of weak forms and contractions, via
CO1	listening to audio-video aids) and summarize it.
	Identify difference between formal & informal ways (use of body language, gestures,
CO2	verbal and facial expressions) of holding discussions in a group.
	Illustrate different functions of English Language and make use of them to handle daily
CO3	routine conversation and dialogues.
	Apply grammatically error free interrogative and affirmative statements while facing
CO4	interviews.
	Utilize formal & informal vocabulary (such as idioms and phrases) to give presentations.

	3rd SEMESTER	
	Course Name: Digital Electronics (BTES301-18)	
CO1	Demonstrate the operation of simple digital gates, identify the symbols, develop the truth	
	table for those gates; combine simple gates into more complex circuits.	
CO2	Show Conversion of binary, hexadecimal, octal numbers to their decimal equivalent and	
	vice versa, Apply concepts of Boolean algebra for handling logical expressions.	
CO3	Demonstrate working and realization of Combinational Circuits.	
G 0.4	Explain the operation of a flip-flop. Design counters and clear the concept of shift	
CO4	registers	
005	Illustrate different types of memories and their applications. Convert digital signal into	
CO5	analog and vice versa.	
	Course Name: Data structure & Algorithms (BTCS 301-18)	
CO1	Explain the performance of data structure operations.	
CO2	Apply the concept of stack and queues using arrays and linked list.	
CO3	Explain the operations on linked list data structure.	
CO4	Develop algorithms for different operations on nonlinear data structures.	
CO5	Identify the searching & sorting techniques for good algorithms.	
	Course Name: Object Oriented Programming (BTCS 302-18)	
CO1	Interpret the basic characteristics, concepts & importance of OOP.	
CO2	Demonstrate the concept of constructors and destructors.	
CO3	Explain various types of Inheritance.	
CO4	Apply the concept of data encapsulation and polymorphism with virtual functions	
CO5	Make use of file handling, exception handling and I/O manipulators for programming.	
	Course Name: Mathematics-III (BTAM 304-18)	
CO1	Find the Partial derivatives and its application in related field of engineering	
	Apply integral formula to find length, area, surface area and volume of revolution of a	
CO2	curve.	
	Solve mathematical problems related to convergence and divergence of sequence and	
	series.	
	Solve differentiation equation of first order and first degree using various method.	
CO5	Apply different Method to solve higher order differential equation	
Cou	rse Name: Foundation Course in Humanities (Development of Societies/Philosophy)-	
	HSMC101/102-18	
CO1	Outline the responsibilities towards the local, national and global societies	
	Illustrate current political scenario of the world that will help to think critically and	
	independently about the world political system	
	Distinguish between various political theories.	
	Explain core economic terms, concepts, and theories.	
CO5	Compare various competent theories of economic development.	

	Course Name: Digital Electronics Lab (BTES 302-18)	
	Demonstrate the operation of simple digital gates, identify the symbols, develop the truth	
CO1	table for those gates; combine simple gates into more complex circuits;	
	Convert binary, hexadecimal, octal numbers to their decimal equivalent and vice versa,	
CO2	Apply concepts of Boolean algebra for handling logical expressions.	
CO3	Demonstrate working and realization of Combinational Circuits.	
	Explain the operation of a flip-flop. Design counters and clear the concept of shift	
CO4	registers	
	Illustrate different types of memories and their applications. Convert digital signal into	
CO5	analog and vice versa.	
	Course Name: Data structure & Algorithms Lab (BTCS 303-18)	
CO1	Construct linear data structures such as stacks, queues using linked lists and arrays.	
CO2	Compare various searching and sorting algorithms.	
	Choose appropriate non-linear data structures (such as trees & graphs) algorithm to solve	
CO3	various computing problems.	
CO4	Identify suitable data structure and algorithm to solve a real-world problem	
	Course Name: Object Oriented Programming lab(BTCS 304-18)	
CO1	Develop classes incorporating object-oriented techniques	
CO2	Demonstrate the concept of constructors and destructors in program design.	
CO3	Develop programs using different forms of Inheritance.	
CO4	Apply the concepts of type conversions & polymorphism.	
	Make use of file handling, Exceptions & templates in C++ to understand generic	
CO5	programming.	
	Course Name: IT Workshop (BTCS 305-18)	
CO1	Explain the functionality of Motherboard and assembling of computer Parts.	
CO2	Analyze to trouble shoot the system.	
CO3	Demonstrate installation of system software and application software.	
CO4	Apply installation steps of MS-Office, Adobe Photoshop and C and C++	
CO5	Define the configuration of Database packages.	

4TH SEMESTER			
Course Name: Discrete Mathematics (BTCS 401-18)			
CO1	Define the concept of sets, relations and functions.		
CO2	Apply principle of mathematical induction and basic counting principle in applications.		
CO3	Apply propositional logic for the validity of arguments		
CO4	Make use of algebraic structures, Boolean algebra and Boolean ring in various applications.		
CO5	Develop an understanding of graph and trees for solving problems arising in the computer science.		
	Course Name: Computer Organization & Architecture (BTES 401-18)		
CO1	Outline the basic functional units, number representation and instruction set of a digital computer.		
CO2	Explain the data processing operations of central processing unit and control unit.		
CO3	Select appropriate interfacing standards for I/O devices.		
CO4	Apply/Illustrate the concepts of pipelining techniques to the processor.		
CO5	Explain the memory hierarchy system.		
	Course Name: Operating Systems (BTCS 402-18)		
CO1	Explain the concepts and generations of operating system		
CO2	Illustrate process and its inter-process communication.		
CO3	Make use of CPU scheduling algorithms, deadlock detection and prevention algorithms for process execution		
CO4	Explain various memory management techniques.		
CO5	Explain the concept of I/O management, file management and disk Management.		
	Course Name: Design & Analysis of Algorithms (BTCS403-18)		
CO1	Compare and analyze the performance of algorithms.		
CO2	Choose appropriate algorithm design techniques for solving problems using design paradigm (greedy/ divide and conquer/backtrack etc.)		
CO3	Illustrate the major graph algorithms and their analysis.		
CO4	Demonstrate the ways to analyze sorting and searching techniques.		
CO5	Examine the necessity for NP class-based problems and explain the use of Heuristics Algorithms and Approximation algorithms.		
	Course Name: Universal Human Values 2(HSMC 122-18)		
CO1	Illustrate the various basis of value education.		
CO2	Explain the harmony of "I" in relation with the "body"		
CO3	Develop harmony in human to human relationship.		
CO4	Interpret harmony in the nature & all levels of existence.		
CO5	Demonstrate the awareness of professional ethics in society.		
Course Name: Environmental Sciences (EVS101-18)			
CO1	Illustrate the various basis of value education.		

CO2	Explain the harmony of "I" in relation with the "body"		
CO3	Develop harmony in human to human relationship.		
CO4	Interpret harmony in the nature & all levels of existence.		
CO5	Demonstrate the awareness of professional ethics in society.		
	Course Name: Computer Organization & Architecture Lab (BTES 402-18)		
CO1	Demonstrate the process of dismantling and assembling of personal computer.		
CO2	Construct the various assembly language programs for basic arithmetic and logical		
CO2	operations in 8085 microprocessors.		
CO3	Construct the various assembly language programs for basic arithmetic and logical		
CO3	operations in 8086 microprocessors.		
CO4	Demonstrate the functioning of microprocessor-based systems with I/O interface.		
Course Name: Operating Systems Lab (BTCS 404-18)			
CO1	Make use of basic services and functionalities of the operating system.		
CO2	Analyze various CPU Scheduling Algorithms		
CO3	Illustrate virtualization and installation of OS on a virtual machine		
CO4	Make use of function commands for files and directories.		
CO5	Create various shell scripts.		
CO6	Evaluate deadlock avoidance algorithm.		
	Course Name: Design & Analysis of Algorithms Lab (BTCS 405-18)		
CO1	Design algorithms using appropriate design techniques (divide and Conquer, greedy,		
COI	dynamic programming, etc.)		
CO2	Implementation of algorithms such as sorting, graph traversal, trees, etc.in a high-level		
CO2	language.		
CO3	Analyze and compare the performance of algorithms using Some notations.		
CO4	Apply and implement learned algorithm design techniques to solve real world problems.		

5TH SEMESTER	
Course Name: Enterprise Resource Planning (BTES 501-18)	
	Provide a contemporary and forward-looking on the theory and practice of Enterprise
CO1	Resource Planning Technology.
	Focus on a strong emphasis upon practice of theory in Applications and Practical oriented
CO2	approach.
	Train the students to develop the basic understanding of how ERP enriches the business
CO3	organizations in achieving a multidimensional growth
	Aim at preparing the students technological competitive and make them ready to self-
CO4	upgrade with the higher technical skills.
	Focuses on major aspects of e-commerce: business development and strategy,
CO5	technological innovations, and social and legal issues and impacts.
	Course Name: Database Management Systems (BTCS 501-18)
	To study the physical and logical database designs, database modeling, relational,
CO1	hierarchical, object-oriented and network models.
	To understand and use data manipulation language to query, update, and manage a
CO2	Database.
CO3	Design ER-models to represent simple database application scenarios
CO4	Formulate data retrieval queries in SQL and the Relational Algebra and Calculus.
	mprove the database design by normalization using the design guidelines and functional
CO5	dependencies.
CO6	To familiarize issues of Transaction Processing, Concurrency Control and database
	recovery.
	Course Name: Formal Language & Automata Theory (BTCS 502-18)
CO1	Explain a formal notation for strings, languages and machines.
CO2	Build finite automata to accept a set of strings of a language.
CO3	Apply context free grammars to generate strings of context free language.
	Analyze equivalence of languages accepted by Push Down Automata and languages
CO4	generated by context free grammars.
	Distinguish between computability and non-computability and Decidability and
CO5	undecidability.
	Course Name: Software Engineering (BTCS 503-18)
CO1	Select a software engineering process life cycle model.
CO2	Explain the requirements of the software.
CO3	Analyze the given specification into a design
CO4	Contrast the various testing and quality assurance techniques.
CO5	Apply modern engineering tools for specification, design, implementation, and testing
Course Name: Computer Networks (BTCS 504-18)	
CO1	Explain the functions of the different layer of the OSI Protocol.

	f each block of wide-area networks (WANs), local area networks
CO2 (LANs) and Wireless L	
CO3 Develop the network pr	ogramming for a given problem related TCP/IP protocol.
	Control Protocol (TCP) and User Datagram Protocol (UDP)
Configure DNS DDNS	TELNET, EMAIL, File Transfer Protocol (FTP), WWW, HTTP,
CO5 SNMP, Bluetooth, Fire	walls using open source available software and tools.
Course Name: Consti	tution of India/ Essence of Indian Traditional Knowledge
	(Mandatory Courses)
CO1 Understand the meaning	g of Indian constitution and its preamble
CO2 Explain the working of	Union Government
CO3 Illustrate the working o	f state Government
CO4 Explain the role of Loc	al Government
CO5 Illustrate the role of Ele	ction Commission
Course Name: I	Database Management Systems Lab (BTCS 505-18)
CO1 Demonstrate installatio	n of database packages/tools and basic SQL concepts.
CO2 Build efficient database	using database language commands.
CO3 Analyze the database us	sing queries to retrieve records
CO4 Formulate queries using	g SQL solutions to a broad range of query problems.
CO5 Apply PL/SQL for proc	essing database
Course Na	me: Software Engineering Lab (BTCS 506-18)
CO1 Identify a software engineering	neering process life cycle.
CO2 Define the requirement	s of the software.
CO3 Analyze the given spec	fication into a design
CO4 Contrast the various tes	ting and quality assurance techniques.
CO5 Apply modern engineer	ing tools for specification, design, implementation, and testing
Course Na	ime: Computer Networks Lab (BTCS 507-18)
CO1 Explain the different ty	pes of Network cables and network topologies
CO2 Describe the function o	f various Networking Devices
CO3 Explain the network Sin	nulation of web traffic in Packet Tracer
CO4 Configure networks usi	ng the concept of subnetting
CO5 Configure networks usi	ng static and default routes
Course Name: Pr	ogramming in Python (BTCS 510-18)- ELECTIVE-I
CO1 Make use of python sta	ndard data types, objects, operators and functions.
CO2 Apply file handling, ex	ception handling and string operations.
CO3 Make use of multithrea	ding programming in python.
CO4 Apply GUI and Web pr	ogramming in python.
CO5 Make use of database p	
	mming in Python Lab (BTCS 513-18)- ELECTIVE-I Lab
CO1 Apply various kinds of	operators in python program

CO2	Make use of list, tuple and dictionaries in python
CO3	Apply various control structures in python programs
CO4	Make use of file handling in python
CO5	Identify various string related function and operations

	6TH SEMESTER		
	Course Name: Compiler Design(BTCS 601-18)		
CO1	Explain the concepts of lexical analysis with regular expression of finite automata.		
CO2	Analyze various parsing algorithms of parser		
CO3	Identify the techniques of Intermediate code generation.		
CO4	Explain the role of run time environment and memory organization.		
CO5	Apply code optimization techniques for advanced language features.		
	Course Name: Artificial Intelligence(BTCS 602-18)		
CO1	Build intelligent agents for search and games		
CO2	Solve AI problems by using various algorithms and strategies		
CO3	Make use of probability models to handle uncertainty		
CO4	Choose optimization and inference algorithms for model learning		
CO5	Apply reinforcement agent to learn and act in a structured environment		
	Course Name: Compiler Design Lab(BTCS 604-18)		
CO1	Design lexical analyser for a given language		
CO2	Develop programs for strings and identifiers.		
CO3	Make use of new tools and techniques for implementing lexical analyser		
CO4	Develop programs for solving parser problems		
CO5	Create a programs for YACC and abstract syntax tree.		
	Course Name: Artificial Intelligence Lab(BTCS 605-18)		
	Describe basic knowledge of Python programming in order to write python programs for		
	search techniques.		
	Demonstrate with the basic concepts of building the Bayesian network.		
CO3	Apply programming skills to infer from the Bayesian network.		
	Analyze a small AI system to run value and policy iteration in a grid network		
CO5	Apply the development skills in reinforcement learning in a grid world.		
(Course Name: Open Elective-I(Microprocessor & Microcontrollers BTEC 402-18)		
	Understand architecture & functionalities of different building block of 8085		
	microprocessor		
	Understand working of different building blocks of 8051 microcontroller.		
	Comprehend and apply programming aspects of 8051 microcontroller.		
CO4	Interface & interact with different peripherals and devices		
	Course Name: Cloud computing (BTCS 612-18)- ELECTIVE-II		
	Explain the core concepts of the cloud computing paradigm		
	Illustrate the importance of virtualization along with their technologies		
	Analyze various cloud computing service and deployment models		
CO4	Apply the various security strategies for different cloud platform		

	Describe the different platforms for cloud computing such as IBM Smart Cloud, Amazon	
CO5	Web Services, Google Cloud platform, Windows Azure platform.	
Course Name: Cloud computing Lab(BTCS 613-18)- ELECTIVE-II Lab		
CO1	Explain the core concepts of the cloud computing paradigm	
CO2	Illustrate the importance of virtualization along with their technologies	
CO3	Analyze various cloud computing service and deployment models	
CO4	Apply the various security strategies for different cloud platform	
	Describe the different platforms for cloud computing such as IBM Smart Cloud, Amazon	
CO5	Web Services, Google Cloud platform, Windows Azure platform.	
Course Name: Data Science(BTCS 616-18)-ELECTIVE-III		
CO1	Illustrate the basics of data science	
CO2	Explain transformation and merging of data for use in analytic tools	
CO3	Make use of statistics in the field of data science	
CO4	Apply linear and multiple linear regression algorithm	
CO5	Build model for data analysis and evaluation	
	Course Name: Data Science Lab(BTCS 617-18)-ELECTIVE-III Lab	
CO1	Identify the impact of data analytics for business decisions and strategy	
CO2	Apply various Data Architecture for deriving solutions	
CO3	Make use of data analysis/ statistical analysis Algorithms	
CO4	Apply standard data visualization and formal inference procedures	
CO5	Make use of various regression algorithms	
	·	

7TH SEMESTER		
Course Name: Distributed databases(BTCS 706-18)-ELECTIVE-IV		
-	Illustrate the database models and computer network conc concepts, Transparencies in a	
	distributed DBMS; Distributed D DBMS architecture; Global directory issue for relevant	
CO1	a applications.	
	A Apply design strategies; Distributed design issues; fragmentation; Data location, View	
CO ₂	management; Data security; Semantic Integrity Control, Objectives of query processing	
-	Make use of various optimization techniques for the efficient retrieval of information	
CO3	from a database.	
CO4	Demonstrate transaction processing, concurrency control & security mechanisms.	
-	Reliability issues in DDBSs; Types of failures; reliability; commit protocols; various	
CO ₅	recovery protocol	
Course Name: Distributed databases Lab(BTCS 707-18)-ELECTIVE-IV Lab		
CO1	Apply basic SQL concept and decomposition methods of normalization	
CO2	Inference database query optimization tools to tune the stored database.	
CO3	Analyze the database, the backup and recovery procedures with server administration.	
	Implement object oriented query language and mining techniques on	
CO4	databases	
CO5	Applying the query techniques on real world web databases.	
•	Course Name: Parallel Computing(BTCS 714-18)-ELECTIVE-V	
CO1	Demonstrate the fundamental principles of parallel computing and classifications	
CO2	Explain different Abstract parallel computational models	
CO3	Interpret different parallel processors : Taxonomy and topology	
CO4	Identify parallel programming	
CO5	Demonstrate the concept of various scheduling and parallizations	
Course Name:Parallel Computing Lab(BTCS 714-18)-ELECTIVE-V Lab		
CO1	Outline the advantages, issues and challenges of the current processors	
CO2	Classify how to optimize a parallel code.	
	Show the various parallel programming paradigms and learn how to choose the right one	
CO3	based on the application domain.	
CO4	Explain parallel codes that are optimized for performance.	
•	Course Name: Network Security and Cryptography(BTCS 701-18)	
-	Describe the fundamental principles of access control models, authentication and secure	
CO1	system design	
CO2	Illustrate Euclidean algorithm and Euler Theorem	
CO3	Explain different cryptographic protocols and techniques.	
CO4	Apply methods for authentication, access control, intrusion detection and prevention.	
-	Demonstrate various network security applications, IPSec, Firewall, IDS, Web Security,	
CO5	Email Security and Malicious software etc	

	Course Name: Data Mining and Data Warehousing (BTCS 702-18)	
CO1	Define the scope and necessity of Data Warehousing & Mining.	
CO2	Explain various data pre-processing techniques for improving the quality of data.	
	Illustrate the concept of data classification methods or Frequent Pattern mining on large	
CO3	data sets.	
CO4	Identify the appropriate data mining methods like clustering and search engine.	
CO5	Classify the basic techniques and tools for analyzing the Web structure and Web access.	
Course Name: Mobile Communication & Networks (BTEC-908B-18)-Open Elective-II		
CO1	Define in depth knowledge of the cellular communications concepts and techniques.	
CO2	Explain the working principles of the mobile communication systems.	
CO3	Relate the relation between the user features and underlying technology.	
CO4	Illustrate mobile communication systems for improved performance.	
CO5	Define the technology behind GSM and CDMA cellular standards.	